164 research outputs found

    Genetic variability of Colletotrichum sublineolum through ISSR markers.

    Get PDF
    The occurrence of diseases is a limiting factor in the development of sorghum crop. Among the diseases that causes losses in sorghum production, anthracnose is the main and most severe, mainly by the genetic variability of the pathogen. In this context, the aim of this study was to evaluate the genetic variability of Colletotrichum sublineolum isolates. DNA were extracted from 56 monosporic isolates of C. sublineolum using a DNA extraction kit, and to perform the analysis of genetic diversity of the isolates were used ISSR primers. After amplification, it was determined the polymorphic information content (PIC), allelic frequency, UPGMA and Tocher clustering analyzes and, using software Structure, the genetic structure. According to the descriptive analysis of the genetic variability of C. Sublineolum isolates, primer AP1 presented the higher value of polymorphic information content (PIC). The higher allelic frequency was observed in loci 06, 09, 10, and 24, and the lowest in locus 02. As for the clustering method, it was observed a tendency of grouping C. sublineolum isolates according the geographic origin and, in addition to demonstrating the genetic variability between the C. sublineolum isolates, it was observed the occurrence of introgression among the isolates

    Comparison of bio-inspired algorithms applied to the coordination of mobile robots considering the energy consumption

    Get PDF
    Many applications, related to autonomous mobile robots, require to explore in an unknown environment searching for static targets, without any a priori information about the environment topology and target locations. Targets in such rescue missions can be fire, mines, human victims, or dangerous material that the robots have to handle. In these scenarios, some cooperation among the robots is required for accomplishing the mission. This paper focuses on the application of different bio-inspired metaheuristics for the coordination of a swarm of mobile robots that have to explore an unknown area in order to rescue and handle cooperatively some distributed targets. This problem is formulated by first defining an optimization model and then considering two sub-problems: exploration and recruiting. Firstly, the environment is incrementally explored by robots using a modified version of ant colony optimization. Then, when a robot detects a target, a recruiting mechanism is carried out to recruit a certain number of robots to deal with the found target together. For this latter purpose, we have proposed and compared three approaches based on three different bio-inspired algorithms (Firefly Algorithm, Particle Swarm Optimization, and Artificial Bee Algorithm). A computational study and extensive simulations have been carried out to assess the behavior of the proposed approaches and to analyze their performance in terms of total energy consumed by the robots to complete the mission. Simulation results indicate that the firefly-based strategy usually provides superior performance and can reduce the wastage of energy, especially in complex scenarios

    Probenecid Inhibits the Human Bitter Taste Receptor TAS2R16 and Suppresses Bitter Perception of Salicin

    Get PDF
    Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs) expressed in gustatory cells. Each bitter taste receptor (TAS2R) responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16) responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC). While many substances are known to activate TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new inhibitor of bitter taste receptors, p-(dipropylsulfamoyl)benzoic acid (probenecid), that acts on a subset of TAS2Rs and inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug Resistance Protein 1 (MRP1) transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct interaction with this GPCR using a non-competitive (allosteric) mechanism. Through a comprehensive analysis of hTAS2R16 point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors, such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid as a pharmacological tool for understanding the cell biology of bitter taste and as a lead for the development of broad specificity bitter blockers to improve nutrition and medical compliance

    LAL Regulators SCO0877 and SCO7173 as Pleiotropic Modulators of Phosphate Starvation Response and Actinorhodin Biosynthesis in Streptomyces coelicolor

    Get PDF
    LAL regulators (Large ATP-binding regulators of the LuxR family) constitute a poorly studied family of transcriptional regulators. Several regulators of this class have been identified in antibiotic and other secondary metabolite gene clusters from actinomycetes, thus they have been considered pathway-specific regulators. In this study we have obtained two disruption mutants of LAL genes from S. coelicolor (Δ0877 and Δ7173). Both mutants were deficient in the production of the polyketide antibiotic actinorhodin, and antibiotic production was restored upon gene complementation of the mutants. The use of whole-genome DNA microarrays and quantitative PCRs enabled the analysis of the transcriptome of both mutants in comparison with the wild type. Our results indicate that the LAL regulators under study act globally affecting various cellular processes, and amongst them the phosphate starvation response and the biosynthesis of the blue-pigmented antibiotic actinorhodin. Both regulators act as negative modulators of the expression of the two-component phoRP system and as positive regulators of actinorhodin biosynthesis. To our knowledge this is the first characterization of LAL regulators with wide implications in Streptomyces metabolism

    Insights into the Binding of Phenyltiocarbamide (PTC) Agonist to Its Target Human TAS2R38 Bitter Receptor

    Get PDF
    Humans' bitter taste perception is mediated by the hTAS2R subfamily of the G protein-coupled membrane receptors (GPCRs). Structural information on these receptors is currently limited. Here we identify residues involved in the binding of phenylthiocarbamide (PTC) and in receptor activation in one of the most widely studied hTAS2Rs (hTAS2R38) by means of structural bioinformatics and molecular docking. The predictions are validated by site-directed mutagenesis experiments that involve specific residues located in the putative binding site and trans-membrane (TM) helices 6 and 7 putatively involved in receptor activation. Based on our measurements, we suggest that (i) residue N103 participates actively in PTC binding, in line with previous computational studies. (ii) W99, M100 and S259 contribute to define the size and shape of the binding cavity. (iii) W99 and M100, along with F255 and V296, play a key role for receptor activation, providing insights on bitter taste receptor activation not emerging from the previously reported computational models

    Water vapor detection in the transmission spectra of HD 209458 b with the CARMENES NIR channel

    Get PDF
    Aims: We aim at detecting H2_2O in the atmosphere of the hot Jupiter HD 209458 b and perform a multi-band study in the near infrared with CARMENES. Methods: The H2_2O absorption lines from the planet's atmosphere are Doppler-shifted due to the large change in its radial velocity during transit. This shift is of the order of tens of km s−1^{-1}, whilst the Earth's telluric and the stellar lines can be considered quasi-static. We took advantage of this to remove the telluric and stellar lines using SYSREM, a principal component analysis algorithm. The residual spectra contain the signal from thousands of planetary molecular lines well below the noise level. We retrieve this information by cross-correlating the spectra with models of the atmospheric absorption. Results: We find evidence of H2_2O in HD 209458 b with a signal-to-noise ratio (S/N) of 6.4. The signal is blueshifted by --5.2 −1.3+2.6^{+2.6}_{-1.3} km s−1^{-1}, which, despite the error bars, is a firm indication of day-to-night winds at the terminator of this hot Jupiter. Additionally, we performed a multi-band study for the detection of H2_2O individually from the three NIR bands covered by CARMENES. We detect H2_2O from its 1.0 μ\mum band with a S/N of 5.8, and also find hints from the 1.15 μ\mum band, with a low S/N of 2.8. No clear planetary signal is found from the 1.4 μ\mum band. Conclusions: Our significant signal from the 1.0 μ\mum band in HD 209458 b represents the first detection of H2_2O from this band, the bluest one to date. The unfavorable observational conditions might be the reason for the inconclusive detection from the stronger 1.15 and 1.4 μ\mum bands. H2_2O is detected from the 1.0 μ\mum band in HD 209458 b, but hardly in HD 189733 b, which supports a stronger aerosol extinction in the latter.Comment: 11 pages, 10 figures; accepted for publication in A&

    Sex differences in self-construal and in depressive symptoms: predictors of cross-national variation

    Get PDF
    Sex differences in aspects of independent versus interdependent self-construal and depressive symptoms were surveyed among 5,320 students from 24 nations. Men were found to perceive themselves as more self-contained whereas women perceived themselves as more connected to others. No significant sex differences were found on two further dimensions of self-construal, or on a measure of depressive symptoms. Multilevel modeling was used to test the ability of a series of predictors derived from a social identity perspective and from evolutionary theory to moderate sex differences. Contrary to most prior studies of personality, sex differences in self-construal were larger in samples from nations scoring lower on the Gender Gap Index, and the Human Development Index. Sex differences were also greater in nations with higher pathogen prevalence, higher self-reported religiosity, and in nations with high reported avoidance of settings with strong norms. The findings are discussed in terms of the interrelatedness of self-construals and the cultural contexts in which they are elicited and the distinctiveness of student samples

    Intra- and Interspecies Genomic Transfer of the Enterococcus faecalis Pathogenicity Island

    Get PDF
    Enterococci are the third leading cause of hospital associated infections and have gained increased importance due to their fast adaptation to the clinical environment by acquisition of antibiotic resistance and pathogenicity traits. Enterococcus faecalis harbours a pathogenicity island (PAI) of 153 kb containing several virulence factors including the enterococcal surface protein (esp). Until now only internal fragments of the PAI or larger chromosomal regions containing it have been transfered. Here we demonstrate precise excision, circularization and horizontal transfer of the entire PAI element from the chromosome of E. faecalis strain UW3114. This PAI (ca. 200 kb) contained some deletions and insertions as compared to the PAI of the reference strain MMH594, transferred precisely and integrated site-specifically into the chromosome of E. faecalis (intergenic region) and Enterococcus faecium (tRNAlys). The internal PAI structure was maintained after transfer. We assessed phenotypic changes accompanying acquisition of the PAI and expression of some of its determinants. The esp gene is expressed on the surface of donor and both transconjugants. Biofilm formation and cytolytic activity were enhanced in E. faecalis transconjugants after acquisition of the PAI. No differences in pathogenicity of E. faecalis were detected using a mouse bacteraemia and a mouse peritonitis models (tail vein and intraperitoneal injection). A 66 kb conjugative pheromone-responsive plasmid encoding erm(B) (pLG2) that was transferred in parallel with the PAI was sequenced. pLG2 is a pheromone responsive plasmid that probably promotes the PAI horizontal transfer, encodes antibiotic resistance features and contains complete replication and conjugation modules of enterococcal origin in a mosaic-like composition. The E. faecalis PAI can undergo precise intra- and interspecies transfer probably with the help of conjugative elements like conjugative resistance plasmids, supporting the role of horizontal gene transfer and antibiotic selective pressure in the successful establishment of certain enterococci as nosocomial pathogens

    Effect of Acinetobacter sp on Metalaxyl Degradation and Metabolite Profile of Potato Seedlings (Solanum tuberosum L.) Alpha Variety

    Get PDF
    One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively) compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC–TOF–MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism
    • …
    corecore